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What’s event camera?

Conventional camera Event camera
Synchronized frames I(x, y) Independent pixels (x, y, p, t)

Intensity values Brightness changes (binary)
Low speed: 30, 60 fps High speed: <1us latency

Low dynamic range (60-90dB) High dynamic range (120dB)
High power consumption Low power consumption

Low noise Severe noise

Intensity + events: differentiable modeling
Event sensing model (B)Intensity sensing model (A)

Objective and loss functions

Motion deblur
Blurry image Image+events

EDI (CVPR’19) Ours (DMR)Ours (DMR) DnCNN FFTNet Ours (RD) Ground truth

Frame prediction

CF (ACCV’18) Ours (RD)

Enhancement via residual learning
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Results

• Use CNN to learn the
residual of DMR output w.r.t.
ground truth
• Designed to enhance

DMR results
• Easy to train

• Model DMR artifacts as
residual “noise”

• Actually beyond Gaussian
denoising

• Single frame based
• Interface well with DMR


