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Physics-based vision meets deep learning
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Physics-based vision meets deep learning
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Physics-based vision meets deep learning
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Physics-based vision meets deep learning

O Imaging scenario
B Learning-based vision
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End-to-end non-linear fitting

usually have
superior performance
as long as you have
sufficient data and GPUs
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Physics-based vision meets deep learning

O Imaging scenario
B Learning-based vision

& | > -visual tasks
oA 4

End-to-end non-linear fitting

Learning from simulation!
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Physics-based vision meets deep learning
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Learning-based vision
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End-to-end non-linear fitting

Learning from simulation!
The gap between
simulation and real data
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Physics-based vision meets deep learning
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Physics-based vision meets deep learning
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Physics-based vision meets deep learning

Imaging scenario
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E.g. video frame interpolation

10/29/2019

Learning-based vision

| >

visual tasks

1-frame interp.
9-frame interp.

"o End-to-end non-linear fitting
NN /
& NN2 Require retraining even
for similar tasks.
NN3
10-frame interp. | «,°.°

PBDL2019, ICCV Workshop 10



Physics-based vision meets deep learning

Imaging scenario
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Framework:
» First use a unifying physics-based

approach to have rough estimation

« Then use DNN to learn the residual.
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multi-modal video synthesis
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Background: rethinking frame-based imaging

Shutter on Photon integration Shutter off A/D conversion Readout Other processing

Q V@D /7

Long — blurry, over exposure {ADC + synchronized read-out}
Short — noisy, under expo. — discrepancy between frames
(frame interpolation)

AN
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Motivation

Frame-based camera pipeline

Shutter on Photon integration Shutter off A/D conversion Readout Other processing
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« We need "smart” cameras that:

« Can respond to high speed motions (eliminate blur)

* Do not always operate at high speed (less data redundancy)

e Potential solution: event cameras
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What's event camera? Another high-speed camera?

Intensity signal
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Scenario: moving poster with shapes
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Each pixel:

« Compare brightness variations
» (blue:increase; red: decrease)
« Small latency (micro-second level)
« 10° FPS! (at max)
» Works independently (asynchronous)

Capture: 22 FPS Display: 1.1 FPS
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But...

« Events # temporal gradient
* Infinitely many solutions to infer intensity from events.
« Cannot capture weak variations

ground truth signal
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But...

« Events # temporal gradient
e Infinitely many solutions to infer intensity from
events.
« (Cannot capture weak variations

* Events are very noisy
* Noise model not well understood
* Gaussian on threshold
* Event denoisers not advanced
« Able to cancel isolated events (correlation)
« Cannot handle complex scenarios, e.g.
illumination change

Example images overlaid with neighbor events
data from DAVIS dataset and Pan et al. CVPR'19

10/29/2019 Wang et al. PBDL2019, ICCV Workshop

16



10/30/2019

We propose intensity frame + events
for high frame-rate video synthesis

PBDL2019, ICCV Workshop
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Our approach: fusion of intensity frame + events

captured data pre-processing DMR Residual “denoising” final output
intensity image + events binning events to frames differentiable model- learning to remove synthesized video
based reconstruction DMR artifacts
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intensity frame tensor intensity data

intensity sensing model
} } forward propagation

latent high-res tensor

} gradient-based
‘ back propagation
.

event sensing model

event data

event frame tensor
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Differentiable model (event sensing)

Per-pixel sensing model

0 = log(l; + b) — log(Ip + b)

1 0 > €,
e = -1 60< —e€,
0 otherwise
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CDV

Differentiable model (approx.)

h; denotes one pixel of J7;
F, istthframeof 77 € RAxwxd

&, = tanh {ae[ﬁﬁ+1 — jﬁ]}

tth event frame
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Differentiable model (frame sensing)

We consider 3 temporal settings: interpolation, prediction and motion deblur.
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Case (intensity tensor notation)
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Reconstruction loss and optimization
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Use stochastic gradient descent (SGD) to minimize the loss.
As loss decreases, results get closer to ground truth.
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Results (DMR)

* Interpolation case
* Given start & end frames + events in-between, recover intermediate frames

Low-speed intensity frames Event frames (20 frames) High-speed video
(2 frames) (21 frames)

The middle frame is withheld for
evaluation

PSNR: 33.41 SSIM:.955 0.0 T 0.25
Frame #10

10/29/2019 Wang et al. PBDL2019, ICCV Workshop

Error map of Frame #10
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Results (DMR)

* Prediction case
* Given start frame and future events, recover future frames

CF [ACCV'18] Ours

PSNR: 23.33 SSIM: 771 PSNR: 25.12 SSIM: .831

PSNR: 35.34 SSIM: .980 PSNR: 36.59 SSIM: .983

10/29/2019 Wang et al. PBDL2019, ICCV Workshop
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Results (DMR)

* Motion deblur case
 Given a blurry image + events in-exposure, recover intermediate sharp frames.

Blurry images Events during exposure EDI [CVPR'19] Ours

Video recovery

10/29/2019 Wang et al. PBDL2019, ICCV Workshop 31



Overview of our approach

captured data pre-processing DMR Residual “denoising” final output
intensity image + events binning events to frames differentiable model- learning to remove synthesized video
based reconstruction DMR artifacts
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Residual “denoiser”

« Use CNN to learn the residual of DMR output w.r.t. ground truth

» Designed to enhance DMR results

« Easy to train
« Model DMR artifacts as residual “noise” DMR 1

* Actually beyond Gaussian denoising

\ Residual learning

global skip connection

17
l layers L
’ H_’H_’ .o —bH—bH
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 Single frame based

e |Interface well with DMR
DMR 2
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[ ]conv

—

DMRn
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Results (residual denoiser)
Ours (DMR) DnCNN [TIP'17]  FFDNet [TIP'18] Ours (RD) Ground truth

10/29/2019 Wang et al. PBDL2019, ICCV Workshop




Ground truth

Ours (RD)

Ours (DMR)  DnCNN [TIP'17] FFDNet [TIP'18]
| "

| Moo J| Mo H N M| N Jl N

| clip name | metric | DMR | DnCNN | FFDNet | Ours |

airplane PSNR | 30.91 31.10 3092 | 31.38
SSIM | 0975 | 0.982 0.976 | 0.982
basketball PSNR | 23.55 | 24.05 2347 | 24.06
SSIM | 0.963 | 0.971 0.964 | 0.972
soccer PSNR | 2996 | 31.08 30.13 | 31.29
SSIM | 0.961 0.974 0.962 | 0.975
billiard PSNR | 36.46 | 3542 36.48 | 36.46
SSIM | 0.982 | 0.986 0.983 | 0.987
ping pong PSNR | 32.46 | 32.26 32.50 | 3224
SSIM | 0974 | 0.978 0975 | 0.979
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Results

« Comparison with non-event-based frame interpolation approach
 Events can provide additional information which is useful for challenging motions.

SepConv [CVPR'17] Ground truth Ours (DMR + RD)

10/29/2019 PBDL2019, ICCV Workshop
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image + events

interpolation

prediction

motion deblur
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Thank you!
Zihao (Winston) Wang
zwinswang@gmail.com
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