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Motivation

* Monitoring cameras are widely deployed in public and/or private places.
* Yet the network-connected cameras are subject to attacks!

« Moreover, mainstream visual algorithms always interface with RGB images / videos, which are privacy revealing.
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Previous work on pre-capture privacy cameras

 Dai et. al,, 2015

* Multiple extremely low-res cameras
* 100x100 to 1x1

* Multi-camera issues (calibration, effective FOV, ...

* Pittaluga and Koppal, 2017

 Optical defocus blur
 Estimating blur kernels (Gaussian) is not hard

* Kulkarni and Turaga, 2016

« Compressive (single pixel) imaging

* Costly to implement (DMD is required)
* Qurs:

 Single camera

» Severely blurred, kernels are very hard to retrieve
* Easy to build
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Lens-free coded aperture imaging

Strength  High visual quality;
CV algorithms friendly

Weakne Lens issues
SS (distortion;
aberration; heavy)

Privacy revealing
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Encoding mask
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Imaging sensor

No lens issues;
Easy to build

Noise due to low light;
Requires heavy computation

preserving
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Polarizing filters

/ \

. Camera board
550nm long-pass filter — I/

Spatial light modulator (SLM)

Image formation (in matrix form)
d = Ao

0E€E Iﬁmnm object image
A € R:XM1] coded aperture PSF

d € R™*1  detected image

Ifm=n =103,
A will be 106 x 10°



What is this?

Hint: encoding mask

Answer
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Coded aperture images are difficult
to understand by human beings!

Can machines do a better job?



A pilot study

Task: 5-class classification. (RGB2gray vs. synthetic CA images)

“writing on board”, “Wall pushups”, “blowing candles”, “pushups”, “mopping floor” from UCF-101

3 frames for each sample
Classifier: VGG-16

Same training settings...

Results:

RGB2gray images 50th: 99.56 (Max: 99.86) 50t: 94.39 (Max: 95.91)
Synthetic CA images 50t: 79.06 (Max: 92.65) 50t: 63.21 (Max: 83.96)

Directly classifying CA images will quickly result in overfitting!

What about reconstruction? Possible but non-trivial.



Scene reconstruction from coded aperture image

We follow the deconvolution method from DeWeert & Farm 2015

The mask used is separable on x and y axis, so as to reduce complexity.
The mask code on one dimension is called “Maximum Length Sequence” (MLS), a family of random binary code.

Coded mask on SLM Captured image Reconstructed image Reference

For high quality:
preprocessing (hot pixel removal, denoising)
PSF calibration Expensive for executing visual tasks!

many iterations
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Challenges and opportunities

DeWeert & Farm 2015, Asif et. al. 2017
Challenging for large kernels

Strong constraints on objects

Available Reconstruction-free vision proposed

CA images Image processing DNN

v

Action recognition in this work.

\ 4

Second layer of privacy, serves as interface to DNNs.

\ 4

First layer of privacy, requires optics knowledge for recovery.
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Motion characterization (Translation)

* 0,(p) = 0,(p + Ap) p =[xy]";Ap = [Ax,Ay]"

* 0,(v) = ¢p(Ap)04(V) Fourier transform, v = [§,1]T  ¢(Ap) = e?7CAx+n4y)
¢ C(v) = % b* |81 8% = ¢p(—Ap) Cross power spectrum

« c(p) =6(p + Ap) Inverse Fourier transform

ax

Translation map

phase correlation
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Translation features for coded aperture images

* da(p) = 02(p) xa = d;(p) p=I[xyl";p'=p+Ap
*D,(vV)=0,-A=¢-0,-A Fourier transform
D;-D} . 0;-A-A*-0} )
* Ca(v) = m =¢ |01,A_A*, %l ~ Cross power spectrum
* cy(p) =6(p") Inverse Fourier transform

The mask spectrum in Fourier space should contain as many non-zeros as possible,
so that Translation features are invariant to mask patterns.

To evaluate, we qualitatively compare three masks (50%)
Mask 1: complete random;

Mask 2: x-y separated MLS;
Mask 3: a circular shape aperture

Mask 2 Mask 3
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Comparison of mask patterns

Mask 1 Mask 2 Mask 3
Fourier spectra RGB frames synthetic CA frames

1D cross-section

n 002

015}

T feature T features from CA frames
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mask 3 002

002 —

0015}

001F

Compared to T feature without mask, Mask 1 and 2 have erTor maps

little effect on T features, but Mask 3 has noticeable error.




Classifying T features

We repeat the 5-class classification task, but first converting RGB images to T features:

RGB->gray->CA->T

We show the progress of validation accuracy for 50 epochs.

We compare 3 strategies:
“m1/m1": train and validate using the same mask;
"m1/m2"; train and validate using two different masks;

"dm1/dm2": train and validate using randomly generated masks

changes for each epoch.

The results validates the “mask-invariant” property for T features.
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Further improvements (Rotation & Scale features)

Validation accuracy

* 02(p) = 01(sRp)
* 0(v) = 0.(sRv)

* |02(q)| =[0,(q + Aq)|

s: scaling factor; R: rotation matrix

Rotation and scale preserves in Fourier domain

Transform to log-polar space. p = [x, y]T= q = [log(p), 8]F

« Use phase correlation again to obtain RS feature map.

« Together with Translation features, to form TRS feature maps.

T, s3, 14

m1/m1
09r —e—m1/m2
—w—dm1/dm2

10 20 30 40
Epoch(s), running average of 5
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training with varying masks improves accuracy!

-

RS features does not have “mask invariant” property. Training
with one particular mask does not apply to another mask.
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Epoch(s), running average of 5
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Further improvements (TRS features at multiple time strides)

Validation accuracy

« Compute TRS at multiple time strides.

« e.g.fora 13-frame video ({73), strides of {s2, 53, s4, s6} results in (6+4+3+2)x2=30 TRS images.

« We name it MS-TRS. @m
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—m1/m1 —m1/m1 —m1/m1
09+ —e—m1i/m2 1 09t —e—mi/m2 1 09+ —e—mi/m2
—w»—dm1/dm2 —»—dm1/dm2 —w»—dm1/dm2
0.8 ] 0.8 ] 0.8r 1
0.7( .07 _07F
8 g i
06 3 06, 3 0.6 Further improved!
(8} [&]
05] c05 g 0.5 NN T
o
= = L
0.4 S04 S04l
S g
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
O 1 1 1 I O 1 1 1 1 O 1 I 1 1
10 20 30 40 10 20 30 40 10 20 30 40
Epoch(s), running average of 5 Epoch(s), running average of 5 Epoch(s), running average of 5

5/25/2019 CVCOPS 2019 14



More testing results

We focus on indoor actions with stationary cameras.

Datasets: 22 classes selected from UCF-101; (for searching for best MS-TRS combinations)
9-class body motion: Hula hoop, mopping floor, body weight squat, ...
13-class subtle motion: Apply eye makeup, apply lipsticks, brushing teeth, ...

Results:

§346, [19 90.5/834 86.1/764 88.6/72.8

$346, [19 is best for cost & performance.

Salient / body motion > subtle / local motion.



More testing results

We focus on indoor actions with stationary cameras.
Datasets:

2) 2 UCF classes + 8 classes from NTU RGB-D dataset (we only use RGB).
"jumping jack” & “body weight squat” are from UCF-101

Testing protocol: video-wise. 3 spatial_scales x 5 time_intervals = 15 clips are sampled for each testing video.

Features: s346, [19 (19-frame clip, compute TRS at strides of {3, 4, 6})

Results: predicted class
1 2 3 4 5 6 7 8 9 10 1 Hopping | .
_ Salient body motion
1 971 00 29 00 0.0 00 00 00 00 00 2 Staggering
2 0094300 00 00 00 29 29 0.0 0.0 3 Jumping up
3 0.0 86914 00 00 0.0 0.0 00 00 00 7 | e
|4 001082781154 00 0.0 00 00 00 B E——
S| 5 00 00 33200767 00 00 00 0.0 0.0 |
- 6  Standing up
9| 6 0028686 00 0057157 00 00 0.0 -
=17 0037157 00 00 57514 00 0.0 0.0 I | S O
8 2951429 00 00 00114314 00 00 8  Throw
9 0065600 00 00 0.0 156 6.3 125 0.0 9  Clapping CUbtle local moti
10 0031429 00 00 00429 86 86 57 T Jbtie focal motion




Testing real CA videos

RGB reference

captured coded aperture videos

|-

5/25/2019
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Successful classes:

body weight squat (3 videos) 100% top-1

jumping jack (5 videos) 100% top-2

standing up (1 video) 100% top-3
Others (e.g. 8 “handwaving” and 2 “sitting down”)
are unsuccessful
Limitation & Future work:

Domain gap between training (synthetic CA)
and testing (real CA); fancy forward simulation
(diffraction effects)

No existing real CA dataset available,

collecting one might be worthy.
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Concluding remarks

* Lens-free coded aperture cameras are useful for privacy preserving vision.
« Captured data is visually incomprehensible.
« The encoding mask / PSF is required to perform reconstruction.

« The masks can be randomly generated for each camera.
» For hackers to obtain the PSF, they need to break into the room and light a point source.

« MS-TRS for privacy-preserving motion features.

* Non-invertible (phase correlation).

« Mask-invariant (Different masks result in the same features).
» True for T features.
» RS features can be achieved by training with varying masks.

Thank youl!
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