Privacy-Preserving Action Recognition using Coded Aperture Videos

Zihao W. Wang¹, Vibhav Vineet², Francesco Pittaluga³, Sudipta N. Sinha², Oliver Cossairt¹, Sing Bing Kang⁴

¹Northwestern University

²Microsoft Research

³University of Florida

⁴Zillow Group

Microsoft

Motivation

- Monitoring cameras are widely deployed in public and/or private places.
- Yet the network-connected cameras are subject to attacks!
- Moreover, mainstream visual algorithms always interface with RGB images / videos, which are privacy revealing.

- Dai et. al., 2015
 - Multiple extremely low-res cameras
 - 100x100 to 1x1
 - Multi-camera issues (calibration, effective FOV, ...)
- Pittaluga and Koppal, 2017
 - Optical defocus blur
 - Estimating blur kernels (Gaussian) is not hard
- Kulkarni and Turaga, 2016
 - Compressive (single pixel) imaging
 - Costly to implement (DMD is required)
- Ours:
 - Single camera
 - Severely blurred, kernels are very hard to retrieve
 - Easy to build

What is this?

Coded aperture images are difficult to understand by human beings!

Can machines do a better job?

Task: 5-class classification. (RGB2gray vs. synthetic CA images)

"writing on board", "Wall pushups", "blowing candles", "pushups", "mopping floor" from UCF-101 3 frames for each sample **Classifier**: VGG-16

Same training settings...

Results:

5-class classification	Training accuracy (%)	Validation accuracy (%)
RGB2gray images	50 th : 99.56 (Max: 99.86)	50 th : 94.39 (Max: 95.91)
Synthetic CA images	50 th : 79.06 (Max: 92.65)	50 th : 63.21 (Max: 83.96)

Directly classifying CA images will quickly result in overfitting!

What about reconstruction? Possible but non-trivial.

Scene reconstruction from coded aperture image

We follow the deconvolution method from *DeWeert & Farm 2015*

The mask used is separable on x and y axis, so as to reduce complexity.

The mask code on one dimension is called "Maximum Length Sequence" (MLS), a family of random binary code.

Coded mask on SLM

Captured image

Reconstructed image

Reference

For high quality:

preprocessing (hot pixel removal, denoising)

PSF calibration

many iterations

Expensive for executing visual tasks!

Challenges and opportunities

- $o_2(\mathbf{p}) = o_1(\mathbf{p} + \Delta \mathbf{p})$
- $O_2(\mathbf{v}) = \phi(\Delta \mathbf{p})O_1(\mathbf{v})$
- $C(\mathbf{v}) = \frac{O_1 \cdot O_2^*}{|O_1 \cdot O_2^*|} = \phi^* \frac{O_1 \cdot O_1^*}{|O_1 \cdot O_1^*|} = \phi(-\Delta \mathbf{p})$

• $c(\mathbf{p}) = \delta(\mathbf{p} + \Delta \mathbf{p})$

Fourier transform, $\mathbf{v} = [\xi, \eta]^T \quad \phi(\Delta \mathbf{p}) = e^{i2\pi(\xi \Delta x + \eta \Delta y)}$

Cross power spectrum

Inverse Fourier transform

- $d_2(\mathbf{p}) = o_2(\mathbf{p}) * a = d_1(\mathbf{p}')$
- $D_2(\mathbf{v}) = O_2 \cdot A = \phi \cdot O_1 \cdot A$
- $C_d(\mathbf{v}) = \frac{D_1 \cdot D_2^*}{|D_1 \cdot D_2^*|} = \phi^* \frac{O_1 \cdot \mathbf{A} \cdot \mathbf{A}^* \cdot O_1^*}{|O_1 \cdot \mathbf{A} \cdot \mathbf{A}^* \cdot O_1^*|} \approx \phi^*$

• $c_d(\mathbf{p}) = \delta(\mathbf{p}')$

 $\mathbf{p} = [x, y]^T; \mathbf{p}' = \mathbf{p} + \Delta \mathbf{p}$

Fourier transform

Cross power spectrum

Inverse Fourier transform

The mask spectrum in Fourier space should contain as many non-zeros as possible, so that Translation features are invariant to mask patterns.

To evaluate, we qualitatively compare three masks (50%)

Mask 1: complete random; Mask 2: x-y separated MLS; Mask 3: a circular shape aperture

Comparison of mask patterns

little effect on T features, but Mask 3 has noticeable error.

5/25/2019

Classifying T features

We repeat the 5-class classification task, but first converting RGB images to T features:

RGB->gray->CA->T

We show the progress of validation accuracy for 50 epochs.

We compare 3 strategies:

"m1/m1": train and validate using the same mask;

"m1/m2": train and validate using two different masks;

"dm1/dm2": train and validate using randomly generated masks changes for each epoch.

The results validates the "mask-invariant" property for T features.

Further improvements (Rotation & Scale features)

- $o_2(\mathbf{p}) = o_1(s\mathbf{R}\mathbf{p})$ s: scaling factor; **R**: rotation matrix
 - Rotation and scale preserves in Fourier domain

• $|0_2(\mathbf{q})| = |0_1(\mathbf{q} + \Delta \mathbf{q})|$

• $O_2(\mathbf{v}) = O_1(s\mathbf{R}\mathbf{v})$

Transform to log-polar space. $\mathbf{p} = [x, y]^T \Rightarrow \mathbf{q} = [\log(\rho), \theta]^T$

- Use phase correlation again to obtain RS feature map.
- Together with Translation features, to form TRS feature maps.

Further improvements (TRS features at multiple time strides)

- Compute TRS at multiple time strides.
 - e.g. for a 13-frame video (*l*13), strides of {s2, s3, s4, s6} results in (6+4+3+2)x2=30 TRS images.
 - We name it MS-TRS.

More testing results

We focus on indoor actions with stationary cameras.

Datasets: 22 classes selected from UCF-101; (for searching for best MS-TRS combinations)

9-class body motion: Hula hoop, mopping floor, body weight squat, ...

13-class subtle motion: Apply eye makeup, apply lipsticks, brushing teeth, ...

Results:

Training /	9-class	13-class	22-class		
validation (%)	body	subtle	indoor		
s346, l19	90.5 / 83.4	86.1 / 76.4	88.6 / 72.8		

s346, l19 is best for cost & performance.

Salient / body motion > subtle / local motion.

More testing results

We focus on indoor actions with stationary cameras.

Datasets: 1) 22 classes selected from UCF-101; (for searching for best combinations)

2) 2 UCF classes + 8 classes from NTU RGB-D dataset (we only use RGB).

"jumping jack" & "body weight squat" are from UCF-101

Testing protocol: video-wise. 3 spatial_scales x 5 time_intervals = 15 clips are sampled for each testing video.

Features: *s346, l19* (19-frame clip, compute TRS at strides of {3, 4, 6})

Result	S:		predicted class												
		1	2	3	4	5	6	7	8	9	10	1	Hopping	1	Saliant body motion
	1	97.1	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	Staggering		Sallent Douy motion
	2	0.0	94.3	0.0	0.0	0.0	0.0	2.9	2.9	0.0	0.0	3	Jumping up		
true class	3	0.0	8.6	91.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4	Jumping jack		
	4	0.0	10.8	2.7	81.1	5.4	0.0	0.0	0.0	0.0	0.0	5	Body weight squat		
	5	0.0	0.0	3.3	20.0	76.7	0.0	0.0	0.0	0.0	0.0	-			
	6	0.0	28.6	8.6	0.0	0.0	57.1	5.7	0.0	0.0	0.0	6	Standing up		
	7	0.0	37.1	57	0.0	0.0	57	51 /	0.0	0.0	0.0	7	Sitting down		
	1	0.0	57.1	5.7	0.0	0.0	5.7	51.4	0.0	0.0	0.0	Q	Throw		
	8	2.9	51.4	2.9	0.0	0.0	0.0	11.4	31.4	0.0	0.0	0	THOW		
	9	0.0	65.6	0.0	0.0	0.0	0.0	15.6	6.3	12.5	0.0	9	Clapping		Cubtle local motion
	10	0.0	31.4	2.9	0.0	0.0	0.0	42.9	8.6	8.6	5.7	10	Handwaving	ł	SUDUE IOCAL MOLION

Testing real CA videos

Successful classes:

body weight squat (3 videos) 100% top-1 jumping jack (5 videos) 100% top-2 standing up (1 video) 100% top-3 Others (e.g. 8 "handwaving" and 2 "sitting down") are unsuccessful

Limitation & Future work:

Domain gap between training (synthetic CA) and testing (real CA); fancy forward simulation (diffraction effects)

No existing real CA dataset available, collecting one might be worthy.

Concluding remarks

- Lens-free coded aperture cameras are useful for privacy preserving vision.
 - Captured data is visually incomprehensible.
 - The encoding mask / PSF is required to perform reconstruction.
 - The masks can be randomly generated for each camera.
 - For hackers to obtain the PSF, they need to break into the room and light a point source.
- MS-TRS for privacy-preserving motion features.
 - Non-invertible (phase correlation).
 - Mask-invariant (Different masks result in the same features).
 - True for T features.
 - RS features can be achieved by training with varying masks.