Privacy-Preserving Action Recognition using Coded Aperture Videos

Z. W. Wang¹, V. Vineet ${ }^{2}$, F. Pittaluga³, S. N. Sinha², O. Cossairt¹, S. B. Kang ${ }^{4}$

${ }^{1}$ Northwestern University, ${ }^{2}$ Microsoft Research, ${ }^{3}$ University of Florida, ${ }^{4}$ Zillow Group

Building a lens-free CA camera

Vision from CA images?
5-class image classification gray images $>95 \%$ CA images $\sim 60 \%$

Motion features

Translation (phase correlation), Rotation \& Scaling

$$
\begin{gathered}
o_{2}(\mathbf{p})=o_{1}\left(\mathbf{s R p}^{\prime}\right) \\
\mathbf{p}^{\prime}=\mathbf{p}+\Delta \mathbf{p} \quad \mathrm{C}(\boldsymbol{v})=\frac{0_{1} \cdot 0_{2}^{*}}{\left|\mathrm{O}_{1} \cdot \mathrm{O}_{2}^{*}\right|}=\phi^{*} \frac{\mathrm{O}_{1} \cdot \mathrm{O}_{1}^{*}}{\left|\mathrm{O}_{1} \cdot \mathrm{O}_{1}^{*}\right|}=\phi(-\Delta \mathbf{p})
\end{gathered}
$$

Goal: executing visual task(s) without looking at privacy-revealing data.
We propose:

1. Pre-capture privacy: lens-free coded aperture cameras.
2. Post-capture privacy: "mask-invariant" motion features.
$+\mathbf{T}$ features are invariant of mask patterns (A in Fourier space).

$$
C_{d}(\boldsymbol{v})=\frac{D_{1} \cdot D_{2}^{*}}{\left|D_{1} \cdot D_{2}^{*}\right|}=\phi^{*} \frac{O_{1} \cdot A \cdot A^{*} \cdot O_{1}^{*}}{\left|O_{1} \cdot A \cdot A^{*} \cdot O_{1}^{*}\right|} \approx \phi^{*}
$$

Cross power spectrum of two CA images in Fourier space.
RS features do not share mask-invariant property.

+ Solution: shuffle masks during training.
+ Further improvement: compute TRS at multiple time intervals.

Results in simulation
predicted class

\[

\]

Salient motion > subtle motion
Benefits of mask-invariant property
Application: private/public surveillanceUser: a generic classifier to only monitor/respond to actions.

Manufacturer: relaxed mask design, less calibration effort.Hacker: more challenging to recover the scenes w/o mask info.

Reconstruction with PSF info?

Non-trivial and expensive

The Bright and Dark Sides of Computer Vision: Challenges and Opportunities for Privacy and Security (CV-COPS 2019), Long Beach CA, June 16, 2019, in conjunction with CVPR 2019

