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A. Comparison of two binning strategies
The two binning strategies are first reiterated below:

• Binning 1: For an incoming event, if its spatial loca-
tion already has an event in the current event frame,
then cast it into a new event frame; Otherwise, this in-
coming event will stay in the current event frame. In
this case, each event frame should only have three val-
ues, i.e., {-1, 0, 1}.

• Binning 2: Similar to several previous work [1, 2, 4, 6],
where events are stacked/integrated over a time win-
dow, we allow each event frame to have more than
three values. However, since the ”tanh” function in
event sensing model only outputs values between -1
and 1, we modify our event sensing model to have
a summation operation over several sub-event frames.
That is, Eb2 =

∑
t Et.

We use a toy example to further analyze the performance of
the two binning strategies, shown in Fig. S1. Assume there
are two intensity pixels at different locations. During a cer-
tain amount of time, each intensity pixel outputs two inten-
sity values, i.e., a1 and b1 from Pixel 1 and a2 and b2 from
Pixel 2. Assume in the same time window four events are
fired from two event pixels. (Assume the locations of event
pixels and intensity pixels match perfectly.) According to
Binning 1, the four events result in 3 event frames. There-
fore, two intermediate frames [x11, x21] and [x12, x22] can
be interpolated accordingly. Binning 1 makes sufficient use
of the temporal order of events, resulting in 6 constraints:

σ(x11 − a1) = 0

σ(x12 − x11) = 1

σ(b1 − x12) = 1

σ(x21 − a2) = −1
σ(x22 − x21) = −1
σ(b2 − x22) = 0,

(S1)

where we use σ(·) to denote the event sensing model
tanh{α(·)}. Binning 2 integrates sub-event frames to-

gether. Therefore, it does not preserve the temporal order of
events, resulting in ambiguity. In Eq. S2, the first equation
has at least three solutions, i.e. {0, 1, 1}, {1, 0, 1}, {1, 1,
0} corresponding to each ”tanh” function respectively. This
ambiguity is challenging to be solved by stochastic gradient
descent.

{
σ(x11 − a1) + σ(x12 − x11) + σ(b1 − x12) = 2

σ(x21 − a2) + σ(x22 − x21) + σ(b2 − x22) = −2
(S2)

B. Statistics on real event streams (Binning 1)

We examine several event streams captured in real sce-
narios using our Binning 1 strategy. The results are shown
in Fig. S2. We plot three metrics: 1) event density, defined
as (# of events) / (full resolution) × 100% per event frame;
2) event speed, defined as (event density) / (event frame du-
ration); and 3) event frame duration, defined as the elapsed
time from the first to the last event in the same frame. We
observe that the event frame duration results in less varia-
tion than the event density and speed. An empirical mean
of the event frame duration is ∼ 2ms, corresponding to
∼ 500FPS and ∼ 16× temporal upsampling from 30FPS
(regular frame rate).

C. Visual results for comparing plug & play to
one-time denoising

We compare two frameworks, i.e., the plug & play [5]
and the one-time denoising to investigate how to use our
trained Residual Denoiser (RD). The plug & play frame-
work decouples the forward physical model and the denois-
ing prior using the ADMM technique [3]. For one time de-
noising, we apply the residual denoiser once after the DMR
has converged. One time denoising is considered because it
is considerably faster than plug & play. From a computa-
tion point of view, one epoch of our DMR has comparable
computation time to one layer of a fully-connected CNN.
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Figure S1: Comparison of two binning strategies.

However, our RD has 17 layers, which requires more com-
putation time for the plug & play method. While we gen-
erally expect plug & play to perform better, our experimen-
tal results show that one-time denoising performs similar or
even better than plug & play, shown in Table S3. (Visual
results are included in supplementary material.) We reason
that this is related to our training process and the initial-
ization of the high-res tensor. Our differentiable model in-
volves a temporal transition process from an existing frame
to a future frame. We initialize the high-res tensor with the
reference intensity frame. In each DMR iteration, the re-
construction process produces artifacts that are similar to
the degradations in the initialized image. However, our de-
noiser is trained to ”recognize” this ”degradation” and re-
move these artifacts. Therefore, our denoiser is most useful
and efficient when applied after the DMR has converged.

D. Additional results for RD compared to
Gaussian denoisers

Additional results comparing our RD with state-of-the-
art Gaussian denoisers are shown in Fig. S4.
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Figure S2: Statistics for using Binning 1 on real event streams.
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Figure S3: Plug & play vs. one-time denoising.
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(a) Ours (DMR) (b) DnCNN [7] (c) FFDNet [8] (d) Ours (RD) (e) ground truth

Figure S4: Comparison of denoising performance. Our learned Residual Denoiser (RD) reconstructs the intermediate frame
(1-frame interpolation case) with fewer motion artifacts.
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